ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF ELASTICITY THEORY PROBLEM FOR SHELL OF POSITIVE CURVATURE AND SMALL THICKNESS*

N.A. BAZARENKO

Abstract

The state of stress and strain of a shell of positive curvature with one edge subjected to the effect of a sufficiently smooth load applied to the endface surface is studied. The case is investigated when the shell thickness is slight. It is proved that the shell state of stress consists of three parts: 1) the internal state of stress that does not possess the property of decay and encloses all domains of the shell body, 2) the slowly decaying state of stress (simple edge effect of shells), and 3) the rapidly decaying state of stress of boundary-layer type. Asymptotic expansions are presented for the components of states of stress and strain of the types 1), 2) and 3). Boundary conditions are formulated for each part of the solution constructed. A system of "two-dimensional" equations of the refined applied theory of shells is obtained on the basis of the solution of a three-dimensional problem of elasticity theory.

1. Initial equations. Let V bc the domain of space filled with shell material, \mathbf{R} is the radius-vector of a running point in this domain, S is the shell middle surface, $\mathbf{r}=\mathbf{r}(\alpha, \beta)$ is some orthogonal parametrization of this surface, \mathbf{n} is the normal direction to the surface
S. Then the transformation equation $\mathbf{R}=\mathbf{r}+\mathbf{n} t$ yields a semi-orthogonal curvilinear coordinate system x^{1}, x^{2}, x^{3} in the domain $V\left(\alpha \equiv x^{1}, \beta \equiv x^{2}, t \equiv x^{3}\right)$.

We introduce an orthonormal coordinate basis $\left(\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right)$, where $\mathbf{i}_{2}, \mathbf{i}_{3}$ are the tangent directions to the coordinate lines x^{2}, x^{3} while $\mathbf{i}_{1}=\mathbf{i}_{2} \times \mathbf{i}_{3}$ is the normal direction to the coordinate surface $x^{1}=$ const. We denote the stress tensor components by $\sigma_{i k}^{*}$ and the coordinates of the displacement vector by $u_{k}{ }^{*}$ in this reference system. We take the elasticity theory equations in a semi-orthogonal coordinate system obtained in /1/, and represented as follows

$$
\begin{align*}
& \left(u_{p}{ }^{*}\right)_{t}{ }^{\prime}=\sigma_{3 p}-\zeta_{p} u_{p}{ }^{*}-\delta_{p} z_{0} u_{q}{ }^{*}-D^{p} u_{3}{ }^{*} \quad(p \neq q=1,2) \tag{1.1}\\
& \left.\left(u_{3}{ }^{*}\right)_{t}{ }^{\prime}=c_{4} \mathrm{I}\left(\zeta_{1}+\zeta_{2}\right) u_{3}{ }^{*}-\theta\left(u_{1}{ }^{*}, u_{2}{ }^{*}\right)\right]-f_{4} \sigma_{33} \\
& \left(\sigma_{3 p}\right)_{t}^{\prime}=\left(\zeta_{q}+2 \zeta_{p}\right) \sigma_{3 p}+\delta_{q} z_{0} \sigma_{3 q}-2 g_{1} g_{2} u_{p}{ }^{*}+ \\
& \left(\delta_{q}-1\right) D^{q} \theta\left(u_{2},{ }^{*}-u_{1}{ }^{*}\right)+D^{p}\left(\sigma_{33}-c_{6} \theta^{*}\right)+2\left(z_{0} D^{q}-\zeta_{q} D^{p}\right) u_{3}{ }^{*} \\
& \left(\sigma_{33}\right)_{t}{ }^{\prime}=2\left(\zeta_{1}+\zeta_{2}\right)\left(\sigma_{33}-f_{6} \theta^{*}\right)-\theta\left(\sigma_{31}, \sigma_{32}\right)-4 g_{1} g_{2} u_{3}{ }^{*}+ \\
& 2\left(\zeta_{2} D^{1}-z_{0} D^{2}+z_{0} z_{2}+z_{1} \zeta_{1}\right) u_{1}^{*}+2\left(\zeta_{1} D^{2}-z_{0} D^{1}+z_{0} z_{1}+z_{2} \zeta_{2}\right) u_{2}^{*} \\
& \sigma_{p p}=2\left(D^{p} u_{p}{ }^{*}+z_{q} u_{q}{ }^{*}-\zeta_{p} u_{3}{ }^{*}+f_{5} \theta^{*}\right) \\
& \sigma_{12}=\left(D^{1}-z_{1}\right) u_{2}^{*}+\left(D^{2}-z_{2}\right) u_{1}^{*}-2 z_{0} u_{3}^{*} \\
& \theta^{*}=\sigma_{33}+2\left[\theta\left(u_{1}{ }^{*}, u_{2}{ }^{*}\right)-\left(\zeta_{1}+\zeta_{2}\right) u_{3}{ }^{*}\right], \quad \theta\left(w_{1}, w_{2}\right) \equiv \\
& \left(D^{1}+z_{1}\right) w_{1}+\left(D^{2}+z_{2}\right) w_{2} \\
& D^{1}=\sqrt{g_{22} / g} \partial / \partial \alpha-\left(g_{12} / \sqrt{g g_{22}}\right) \partial / \partial \beta, \quad D^{2}=\left(1 / \sqrt{g_{22}}\right) \partial / \partial \beta, \\
& \delta_{p}=1+(-1)^{p} \\
& g=\operatorname{det}\left\|g_{i k}\right\|, g_{p}=k_{p} /\left(1-k_{p} t\right), \sigma_{i k}=\sigma_{i k} * / \mu, 2 \chi=(1-v)^{-1} \\
& c_{r s}=(1+r) x-3+s / 2, c_{0 s} \equiv f_{s}, c_{1 s} \equiv c_{s}(r, s=0,1,2, \ldots 9)
\end{align*}
$$

as the initial relations.
Here $g_{i k}$ are the metric tensor components, k_{1} and k_{2} are the principal curvatures of the surface S, μ is the shear modulus, and v is the Poisson's ratio. The functions z_{p} and ζ_{p} satisfy the Gauss-Peterson-Codazzi equations

$$
\begin{align*}
& D^{q} \zeta_{p}-D^{p} z_{0}=2 z_{0} z_{p}+z_{q}\left(\zeta_{q}-\zeta_{p}\right), \quad g_{1} g_{2}=-z_{1}^{2}-z_{2}^{2}-D^{1} z_{1}-D^{2} z_{2} \tag{1.2}\\
& \left(\zeta_{p}\right)_{t}^{\prime}=\zeta_{p}^{2}+\left(2 \delta_{q}-1\right) z_{0}^{2}, \quad\left(z_{p}\right)_{t}^{\prime}=z_{p} \zeta_{2}+{ }^{1} / 2\left(\delta_{q} D^{q} z_{0}-\delta_{p} D^{p} \zeta_{1}\right) \\
& \left(z_{0}\right)_{t}^{\prime}=2 z_{0} \zeta_{2}, \zeta_{1}+\zeta_{2}=g_{1}+g_{2}, \quad z_{0}^{2}=\zeta_{1} \zeta_{2}-g_{1} g_{2} \quad(p \neq q=1,2)
\end{align*}
$$

[^0]The relationships

$$
\begin{align*}
& \left(D^{p}\right)_{t}^{\prime}=\zeta_{p} D^{p}+\delta_{q} z_{0} D^{q},\left.\quad\left(D^{p}\right)\right|_{t=0}=A_{p} \partial \partial x^{p}=\partial_{p}^{*} \tag{1,3}\\
& \left.\left(z_{0}\right)\right|_{t=0}=M A_{1} A_{2}=m \\
& \left(D^{y}+z_{p}\right) D^{\prime} \equiv\left(D^{2}+z_{q}\right) D^{p},\left.\quad\left(\zeta_{p}\right)\right|_{t=0}=A_{p}^{2} B_{p}=k_{p p} \\
& \left.\left(z_{p}\right)\right|_{t=0}=-\partial_{p} * \ln A_{q}=k_{p}^{*} \\
& k_{11} \equiv k_{\sim \alpha}, k_{29}=k_{\beta}, A_{1}=1 / V E, A_{2}=1 / V \bar{G}, B_{1}=L, B_{2}=N \\
& H=k_{\alpha} \cdots k_{\beta}=k_{1}+k_{2}, m^{2}-k_{\alpha} k_{\beta}-k_{1} k_{2}(p \neq q=1,2)
\end{align*}
$$

hold together with (1.2).
Here $k_{p p}$ and $(-1)^{p} k_{q}{ }^{*}$ are, respectively, the normal and geodesic curvatures of the coordinate line $x^{q}=$ const on the middle surface, $(-1)^{q} m$ is the geodesic torsion of the surface S in the direction of this same line, and E, G, L, M, N are coefficients of the first and second quadratic forms.

Integrating (1.1) by using power series in the coordinate t, and using the relationships (1.2) and (1.3) here, as well as the symbolic writing of A.I. Lur'e $/ 2,3 /$, we obtain

$$
\begin{align*}
& u_{k}^{*}=u_{k}+\sum_{s=1}^{\infty} t^{s}\left(A_{k, s}^{j} u_{j}+B_{h, s} \sigma_{j}\right), \quad \sigma_{p q}=\sum_{s=0}^{\infty} t^{s}\left(A_{p q, s}^{j} u_{j}+B_{p q, s}^{j} \sigma_{j}\right) \tag{1.4}\\
& \sigma_{3 k}=\sigma_{k}+\sum_{s=1}^{\infty} t^{s}\left(A_{3 k, s}^{j} u_{j}+B_{3 k, s}^{j} \sigma_{j}\right) \quad(p, q=\mathbf{1}, 2) \tag{1.5}
\end{align*}
$$

Here $A_{k, s}^{j}, \ldots, B_{i k, s}^{j}$ are known differential operators $/ 1 /, u_{j}=u_{j}{ }^{*}(\alpha, \beta, 0)$ and $\sigma_{j}=\sigma_{3 j}(\alpha$, $\beta, 0)$ are the displacement and stress on the middle surface for $t=0$.

It can be shown that all the coefficients $A_{i k, s}^{j} u_{j}$ are expressed in terms of the quantities $\varepsilon, \omega \equiv\left\{\varepsilon_{1}, \varepsilon_{2}, \omega\right\}$ and $x, \tau \equiv\left\{\mu_{1}, x_{2}, \tau\right\}$ are respectively the components of the tangential and bending strains of the middle surface /4/

$$
\begin{align*}
& A_{p p, 0}^{j} u_{j} \equiv t_{p}=2\left(c_{6} \varepsilon_{p}+c_{4} \varepsilon_{q}\right), \quad A_{12,0}^{j} u_{j}=\omega \quad(p \neq q=1,2) \tag{1.6}\\
& A_{p p, 1}^{j} u_{j}=m_{p}+\left(2 \delta_{q}-1\right) m\left(\omega+k_{p p} t_{p}\right. \\
& A_{12,1}^{j} u_{j}=2 \tau+H \omega+m\left(t_{2}+2 \varepsilon_{2}\right) \\
& A_{3 p, \mathbf{1}}^{j} u_{j} \equiv L_{p}(t, \omega)=k_{p}^{*} t_{q}-\left(\partial_{p}^{*}+k_{p}^{*}\right) t_{p}-\left(\partial_{q} *+2 k_{q}^{*}\right) \omega \\
& m_{p}=2\left(c_{6} \varkappa_{p}+c_{4} \chi_{q}\right) \\
& A_{33,1}^{j} u_{j} \equiv L_{3}(t, \omega)=-k_{q} t_{1}-k_{5} t_{2}-2 m \omega, m_{1}+m_{2}=4 c_{5} m^{*} \\
& A_{i, 2}^{j} u_{j} \equiv \Pi_{i k}(\alpha, \tau)+\Pi_{i k}^{*}(\varepsilon, \omega), \\
& \Pi_{p p}=c_{4} k_{q q} m^{*}+k_{p p} m_{p}+\left(4 \delta_{q}-2\right) m \tau \\
& \Pi_{12}=H \tau+m\left(c_{6} m^{*}+m_{2}-m_{1}\right), \quad \Pi_{3 p}=-c_{6} \partial_{p}{ }^{*} m^{*}, \quad \mathrm{II}_{33}=-c_{6} H m^{*}
\end{align*}
$$

The coordinate system α, β, t is used to study the internal, thin-shell state of stress varying smoothly in the domain V. Another part of the state of stress, localized in the boundary-layer zone and decaying exponentially with distance from the shell edge, is investigated in a system of local semi-geodesic coordinates n, s, t. To this end, orthogonal semigeodesic parametrization $\mathbf{r}=\mathbf{r}(n, s)$ is introduced on the middle surface, whose single egde is determined by a regular closed line Γ, so that the family of coordinate lines $s=$ const will consist of geodesics perpendicular to Γ. The line Γ is here determined by the equation $n=0$, and the coordinate s is its natural parameter.

Furthermore, to indicate in which coordinate system the components $\sigma_{i k}, u_{k}$, etc. have been obtained, we rename them by replacing the superscipts 1 and 2 by appropriate letters.
2. Internal state of stress and strain. Let Γ_{1} and Γ_{2} be parts of the shell surface given by $\zeta= \pm 1$ and $n=0$, respectively ($\zeta=t / h$, where h is half the shell thickness). Let us extract the homogeneous solutions out of (1.4) and (1.5), i.e., solutions which keep the boundary Γ_{1} stress-tree

$$
\begin{equation*}
\sigma_{3 i}=0 \text { as } \zeta= \pm 1(i=1,2,3) \tag{2.1}
\end{equation*}
$$

and permit satisfaction of the boundary conditions on the endface surface Γ_{2}

$$
\begin{equation*}
\sigma_{n n}^{*}=q_{2}^{*}, \quad \sigma_{n s}{ }^{*}=q_{2}^{*} \quad \sigma_{n s}{ }^{*}=q_{3}^{*} \text { as } n=0 \tag{2.2}
\end{equation*}
$$

where $q_{i}^{*}=\mu q_{i}(s, \zeta)$ are coordinates of the external force intensity vector.
Taking account of (1.5), we write the system (2.1) thus:

$$
\begin{equation*}
\sigma_{i}+\sum_{s=1}^{\infty} h^{2 s}\left(A_{3 i, 2 s}^{j} u_{j}+B_{3 i, 2 s}^{j} \sigma_{j}\right)=0 \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{s=0}^{\infty} h^{2 s}\left(A_{3 i, 2 s+1}^{j} u_{j}+B_{3 i, 2 s+1}^{j} \sigma_{j}\right)=0 \quad(i=1,2,3) \tag{2.4}
\end{equation*}
$$

We shall seek the undamped solution of the singularly-perturbed system presented above, as $h \rightarrow 0$. In this case the operators $A_{3 i, s}^{j}$ and $B_{3 i, s}^{j}$ applied to the functions u_{j} and σ_{j} do not change their order of smallness in h, while the stresses σ_{j} admit of asymptoticexpansion:

$$
\begin{equation*}
\sigma_{j}=\sigma_{j, 0}+h^{2} \sigma_{j, 1}+h^{4} \sigma_{j, 2}+\ldots(j=1,2,3) \tag{2.5}
\end{equation*}
$$

Substituting (2.5) into (2.3) and equating the expression for $h^{2 k}(k=0,1,2 \ldots)$ to zero, we obtain a system of recursion equations in the unknowns $\sigma_{j, r}(r=0,1,2, \ldots)$. We hence find

$$
\begin{align*}
& \sigma_{j}=-h^{2} A_{3 j, 2}^{i} u_{i}-h^{4} C_{j, 422}^{i} u_{l}+\ldots \quad(j=1,2,3) \tag{2.6}\\
& C_{j, m r l}^{i}=A_{3 j, m}^{i}-B_{3 j, r}^{k} A_{3 k, l}^{i} \quad(m, r, \quad l=0,1,2, \ldots, 9)
\end{align*}
$$

Eliminating the stress σ_{j} from (1.4), (1.5) and (2.4) by using (2.6), we obtain

$$
\begin{align*}
& u_{k}^{*}=u_{k}+h \zeta A_{k, 1}^{i} u_{i}+h^{2} \zeta^{2} A_{k, 2}^{i} u_{i}+\ldots \tag{2.7}\\
& \sigma_{p q}=A_{p q, 0}^{i} u_{i}+h \zeta A_{p q, 1}^{i} u_{i}+h^{2}\left(\zeta^{2} A_{p q, 2}^{i}-B_{p q, 0}^{k} A_{3 k, 2}^{i}\right) u_{i}+\ldots \\
& \sigma_{3 k}=h^{2}\left(\zeta^{2}-1\right)\left(A_{3 k, 2}^{i} u_{i}+h \zeta A_{3 k, 3}^{i} u_{i}+\ldots\right) \quad(p, q=1,2) \\
& A_{3 j, 1}^{k} u_{k}+h^{2} C_{j, 312}^{k} u_{k}+h^{4}\left(C_{j, 532}^{k}-B_{3 j, 1}^{i} C_{i, 422}^{k}\right) u_{k}+\ldots=0 \tag{2.8}\\
& C_{j, 312}^{k} u_{k} \equiv \Lambda_{j}(x, \tau)+\Lambda_{j}^{*}(\varepsilon, \omega) \\
& \Lambda_{3}=-\frac{2}{3}\left[c_{54}\left(f_{0} H^{2}-k_{1} k_{2}\right)+c_{6} \nabla\right] m^{*} \\
& \Lambda_{p}=\frac{1}{3}\left\{\left[\left(c_{54} H-c_{4} k_{p p}\right) \partial_{p}^{*}-c_{4} m \partial_{q}^{*}\right] m^{*}-c_{6} c_{54} \partial_{p}^{*}\left(H m^{*}\right)+\right. \\
& \left.\quad \partial_{q}^{*}\left[\left(k_{p p}-k_{q q}\right) \tau+m\left(x_{q}-x_{p}\right)\right]\right\} \\
& \nabla=\left(\partial_{1}^{*}+k_{1}^{*}\right) \partial_{1}^{*}+\left(\partial_{2}^{*}+k_{2}^{*}\right) \partial_{2}^{*}, \quad m^{*}=x_{1}+x_{2} \\
& (p \neq q=1,2 ; \quad j=1,2,3)
\end{align*}
$$

Furthermore, by appending the strain continuity equation to (2.8) /4/

$$
\begin{equation*}
\Omega_{j}(\varkappa, \tau) \equiv L_{j}(m, 2 \tau)-2 \Pi_{3 j}(\varkappa, \tau)=R_{j}(\varepsilon, \omega) \quad(j=1,2,3) \tag{2.9}
\end{equation*}
$$

and selecting the quantities of the strain components ε, ω and x, τ as unknowns, we will seek the undamped solution of the system obtained in the form of asymptotic expansions

$$
\begin{equation*}
\varepsilon_{j}=\sum_{r=0} h^{r / 2} \varepsilon_{j, r}, \quad x_{j}=h^{-2} \sum_{r=0} h^{r / 2} x_{j, r} \quad\left(\varepsilon_{3} \equiv \omega, \chi_{3} \equiv \tau, j=1,2,3\right) \tag{2.10}
\end{equation*}
$$

Now, substituting (2.10) into (2.8), (2.9) and equating the expression for $h^{r / 2}$ to zero, we obtain a system of recurrent equations in the functions $\varepsilon_{j, r}$ and $x_{j, r}$

$$
\begin{align*}
& L_{j, r}(t, \omega)=-\Lambda_{j, r}(x, \tau), \Omega_{j, r}(x, \tau)=0 \quad(j=1,2,3) \tag{2.11}\\
& \Omega_{j, l}(x, \tau)=R_{j, r}(\varepsilon, \omega) \text { etc. } \quad(l=r+4, r=0,1,2,3)
\end{align*}
$$

For instance, writing $L_{p, r}(t, \omega)$ or $t_{p, r}$ is decoded thus

$$
\begin{aligned}
& L_{p, r}(t, \omega) \equiv k_{p}^{*} t_{q}, r-\left(\partial_{p}^{*}+k_{p}^{*}\right) t_{p, r}-\left(\partial_{q}^{*}+2 k_{q}^{*}\right) \omega_{r} \\
& t_{p, r} \equiv 2\left(c_{6} \varepsilon_{p, r}+c_{4} \varepsilon_{q}, r\right)
\end{aligned}
$$

Determining the functions $\varepsilon_{j, r}$ and $x_{j, r}$ from (2.11), and then substituting (2.10) into (2.7), we find the asymptotic expansion of the components of the shell internal state of stress and strain. Taking account of (1.6), we obtain

$$
\begin{align*}
& \sigma_{p p}=h^{-1} \zeta m_{p, 0}+h^{-1 / 2} \zeta m_{p, 1}+\left(\zeta m_{p, 2}+t_{p, 0}+\zeta^{2} \Pi_{p p, 0}-c_{1} \Pi_{33,0}\right)+\ldots \tag{2.12}\\
& \sigma_{12}=h^{-1} 2 \zeta \tau_{0}+h^{-1 / 2} 2 \zeta \tau_{1}+\left(2 \zeta \tau_{2}+\omega_{0}+\zeta^{2} \Pi_{12,0}\right)+\ldots \\
& \sigma_{3 k}=\left(\zeta^{2}-1\right)\left(\Pi_{3 k, 0}+h^{1 / 2} \Pi_{3 k}, H_{1}+\ldots\right), \quad u_{k}=h^{-2} u_{k, b}+h^{-2 / 2} u_{k, 1}+\cdots \\
& u_{p} *=h^{-2} u_{p, 0}+h^{-3 / 2} u_{p, 1}+h^{-1}\left[u_{p, 2}-\zeta\left(\partial_{p} u_{3,0}+k_{p p} u_{p, 0}+\right.\right. \\
&\left.\left.\delta_{p} m u_{q, 0}\right)\right]+\cdots \\
& u_{0} *=h^{-2} u_{0,0}+h^{-8 / 2} u_{3,1}+h^{-1} u_{3,2}+\cdots \quad(p \neq q-1,2)
\end{align*}
$$

Let us note that the problem of determining the middle surface displacements by means of given strain components is solved in quadratures $/ 4,5 /$, here the quantities $u_{k, r}$ are found in terms of the functions $x_{j, r}$ and $\varepsilon_{j, r-4}$.

Let us introduce the specific forces $T_{p}, S_{q p}, N_{p}$ and the moments $G_{p}, H_{q p}$ originating on the shell coordinate sections $x^{p}=$ const $(p \neq q:=1,2)$

$$
\begin{gather*}
A_{q} \int_{-h}^{h} \boldsymbol{\sigma}_{(p)} \sqrt{g_{q q}} d t=T_{p} \mathbf{i}_{p 0}+S_{q p} \mathbf{i}_{q 0}-N_{p} \mathbf{i}_{3}=\mu h \sum_{r=0} h^{r / \mathbf{2}}\left(T_{p, r} \mathbf{i}_{p 0}+S_{q p}, \mathbf{i}_{q \mathbf{0}}-N_{p, r} \mathbf{i}_{3}\right) \tag{2.13}\\
A_{q} \int_{-h}^{h}\left(\boldsymbol{\sigma}_{(p)} \times \mathbf{i}_{3}\right) t \sqrt{g_{q q}} d t=(-1)^{q}\left(H_{q p} \mathbf{i}_{p \mathbf{0}}+G_{p} \mathbf{i}_{q 0}\right)=(-1)^{q} \mu h \sum_{r=0} h^{r / 2}\left(H_{q p, r} \mathbf{i}_{p 0}+G_{p, r} \mathbf{i}_{q 0}\right)
\end{gather*}
$$

Here $\boldsymbol{\sigma}_{(p)}$ is the stress vector on the surface $x^{p}=\mathbf{c o n s t}$, and $\mathbf{i}_{p 0}=\left.\left(\mathbf{i}_{p}\right)\right|_{t=0}$. Substituting (2.12) into (2.13), we obtain

$$
\begin{align*}
& T_{p, r}=2 t_{p, r}+\frac{2}{3} c_{54} m_{r}^{*}\left(c_{6} H-k_{q q}\right) \tag{2.14}\\
& S_{12, r}+S_{21, r}=4 \omega_{r}+\frac{4}{3} c_{54} m m_{r}^{*} \\
& H_{12, r}=H_{21, r}=\frac{4}{3} \tau_{r}, \quad G_{p, r}=-\frac{2}{3} m_{p, r}, \\
& N_{p, r}=-\frac{8}{3} f_{6} \partial_{p}^{*} m_{r}^{*}=\left(f_{6} / c_{5}\right) \partial_{p} *\left(G_{1, r}+G_{2, r}\right) \\
& S_{21, r}-S_{12, r}=\left(k_{\alpha}-k_{\beta}\right) H_{21, r}+m\left(G_{1, r}-G_{2, r}\right) \tag{2.15}\\
& (p \neq q=1,2 ; \quad r=0,1,2,3)
\end{align*}
$$

Eliminating the quantities $t_{p, r}, \omega_{r}$ and $m_{p, r}, \tau_{r}$ from (2.11) by using (2.14) we obtain

$$
\begin{align*}
& \left(\partial_{p}^{*}+k_{p}^{*}\right) T_{p, r}-k_{p}^{*} T_{q, r}+\left(\partial_{q}^{*}+k_{q}^{*}\right) S_{p q, r}+k_{q}^{*} S_{q p, r}+ \tag{2.16}\\
& \quad k_{p p} N_{n, r}+m N_{q, r}=0 \\
& k_{11} T_{1, r}+k_{22} T_{2, r}+m\left(S_{12, r}+S_{21, r}\right)-\left(\partial_{1}{ }^{*}+k_{1}^{*}\right) N_{1, r}- \\
& \quad\left(\partial_{2}{ }^{*}+k_{2}^{*}\right) N_{2, r}=0 \\
& k_{p}^{*} G_{q, r}-\left(\partial_{p}^{*} \div k_{p}^{*}\right) G_{p, r}+\left(\partial_{q}{ }^{*}-2 k_{q}^{*}\right) H_{21, r}+N_{p, r}=0 \\
& (p \neq q=1.2 ; r=0,1,2,3) \\
& 2 m H_{21, r}-k_{11} G_{1, r}-k_{22} G_{2, r}-\left(f_{6} / c_{5}\right) H\left(G_{1, r}+G_{2, r}\right)=0
\end{align*}
$$

The first six equations from (2.15) and (2.16) agree in form with the equilibrium equations of general shell theory /4/. Hence, (2.14) should be considered as an equation of state. It can be shown that the internal state of stress described by the relationships (2.12)(2.16) is the sum of membrane and purely couple-stress states.
3. Simple edge effect. By using the system of local coordinates n, s, t we seek the solution of (2.1) localized in the boundary layer, for which the following asymptotic relationships are characteristic

$$
\begin{align*}
& \partial_{p} u_{j}=O\left(u_{j} / h^{v_{p}}\right), \partial_{p} \sigma_{j}=O\left(\sigma_{j} / h^{v^{v}}\right)\left(p=1,2 ; v_{1}=1 / 2, v_{2}=0\right) \tag{3.1}\\
& \left(\partial_{1} \equiv \partial / \partial n, \partial_{2} \equiv \partial \partial s\right)
\end{align*}
$$

Estimating the orders of the differential operators applied to the displacements u_{i} in the expansions (2.6), it can be established that the expansions (2.6) - (2.8) hold also for the solution possessing the property (3.1). As is known $/ 6 /$, the system (2.1) reduces to one constitutive equation by using the stress function in the case of circular cylindrical and spherical shells. For shells of arbitrary shape an asymptotic analog of the stress function, the function ψ_{3}, is successfully obtained. We sel

$$
\begin{align*}
& u_{p}=M_{3 p} \varphi_{3}+\varphi_{p}, u_{3}=M_{33} \varphi_{3}(p \neq q=1,2) \tag{3.2}\\
& M_{3 p}=M_{3 p}^{*}+X_{p, 1^{2}} d_{1}{ }^{2}+X_{p, 2} d_{1} d_{2}+\ldots+X_{p, 6} \\
& d_{2}^{m} d_{1}{ }^{k}=d_{1}{ }^{k} d_{2}{ }^{m} \equiv A_{2}^{m} \partial_{2}{ }^{m} \partial_{1}{ }^{k} \\
& M_{33} \equiv M_{33}{ }^{*}+Y_{1} d_{1}{ }^{3}+Y_{2} d_{1}{ }^{2} d_{2}+\ldots+Y_{10} \\
& M_{33}{ }^{*}=\chi\left(d_{1}^{4}+2 d_{1}{ }^{2} d_{2}{ }^{2}+d_{2}{ }^{4}\right) \\
& M_{3 p}^{*}=\left(x H-k_{q q}(2) d_{p}{ }^{3}-c_{4} m d_{q} d_{p}{ }^{2}+\left(c_{25} k_{p p}-x k_{q q}\right) d_{q}{ }^{2} d_{p}+c_{6} m d_{q}{ }^{3}\right.
\end{align*}
$$

Here $X_{p, r}$ and $Y_{m}(r=1,2, \ldots, 6 ; m=1,2, \ldots, 10)$ are functions to be determined, $M_{3 j}{ }^{*}$ are cofactors to the elements $a_{3 j}$ of the determinant det $\left\|a_{i j}\right\|\left(a_{i j} \equiv A_{3 i, 1}^{j}\right)$ in which the symbols ∂_{1} and ∂_{2} are considered as numbers.

Substituting (3.2) into (2.8), we obtain

$$
\begin{align*}
& A_{3,1}^{k} M_{3 k} \varphi_{3}+A_{3,3}^{p} \varphi_{p}+h^{2}\left(C_{j, 32}^{k} M_{3 k} \varphi_{3}+C_{i, 318}^{p} \varphi_{p}\right)+\ldots=0 \tag{3.3}\\
& (j=1,2,3)
\end{align*}
$$

(summation over repeated superscript p from 1 to 2).
Because of the selection of $M_{3 k}^{*}$ the operators $A_{3 j, 1}^{k} M_{3 k}$ have the form

$$
A_{3,1}^{k} M_{3 k}=\sum_{l, r=0}^{4} a_{l r}^{(j)} d_{1}^{I} d_{2}^{r} \quad(l+r \leqslant 4, \quad j=1,2,3)
$$

Now, having the functions $X_{p, \tau}$ satisfying the conditions

$$
a_{40}^{(p)}=a_{21}^{(p)}=a_{22}^{(p)}=a_{30}^{(p)}=a_{21}^{(p)}=a_{20}^{(p)}=0 \quad(p=1,2)
$$

at our disposal, we use the axbitrariness of the functions Y_{m}, so that all the remaining coefficients $a_{l r}{ }^{(p)}(l+r \leqslant 4)$ would vanish for circular cylindrical and spherical shells.
we hence find the quantities $X_{p, r}, Y_{m}$ and $a_{l r}{ }^{(j)}$ some of which are presented below

Furthermore, following $/ 7 /$ and taking account of (3.4), we expand the coefficients in (3.3) in a power series in the coordinate n and we stretch the scale

$$
\begin{align*}
& n=h^{1 / g}, \quad \partial_{1}=h^{-1 / 2} \partial_{10}, \quad \partial_{10}=\partial / \partial \xi, \quad A_{2}=1-h^{1 / r} k_{g}+\ldots \tag{3,5}\\
& h_{\mathrm{s} 0}=\left.k_{\mathrm{s}}\right|_{n=0}, \quad m_{0}=\left.m\right|_{n=0}, \quad k_{g}=\left.k_{n}^{*}\right|_{n=0}, \quad \text { etc. }
\end{align*}
$$

Finally, by sceking the unknowns φ, in the form of the expansions

$$
\begin{equation*}
\varphi_{p}=h^{1 / 2} \sum_{r=0} h^{r / 2} \varphi_{p r}, \quad \varphi_{3}=h \sum_{r=0} h^{r / 2} \varphi_{3_{r}} \quad(p=1,2) \tag{3.6}
\end{equation*}
$$

and substituting (3.6) into (3.2), (3.3) and (2.7), we obtain
$h^{-1 / 2}\left[-\partial_{10}{ }^{2} \varphi_{10}+\left(x f_{5} H_{0}-k_{50} c_{5} / 3\right) \partial_{10}{ }^{7} \varphi_{90}\right]+\ldots=0$
$h^{-1 / 2}\left[-\partial_{10}{ }^{2} \varphi_{20}+\frac{1}{3} x c_{2} m_{0} \partial_{10}{ }^{7} \varphi_{30}\right]+\ldots=0 \quad\left(c^{2}=3\left(1-v^{2}\right)\right)$
$h^{-1}\left(c^{2} k_{50}{ }^{2} \partial_{10}{ }^{4}+\partial_{10}{ }^{8}\right) \varphi_{30}+h^{-1 / 5}\left\{\left(c^{2} k_{s 0}{ }^{2} \partial_{10}{ }^{4}+\partial_{10}{ }^{8}\right) \varphi_{31}+4 k_{g} \partial_{40}{ }^{7} \varphi_{30}+\right.$

$$
2 c^{2}\left[\xi k _ { s 0 } \left(\partial k_{5} / \partial n_{0} \partial_{10}{ }^{4}-2 k_{s 0} m_{0} \partial_{10}{ }^{3} \partial_{2}+\right.\right.
$$

$$
\begin{equation*}
\left.\left.\left(k_{g} k_{\mathrm{s} 0}{ }^{2}-\left(m_{0} k_{\mathrm{s} 0}\right)_{s}\right) \partial_{10}{ }^{3}\right] \varphi_{v u}\right\}+\ldots=0 \tag{3.8}
\end{equation*}
$$

$\sigma_{n n}=-h^{-1} 4 \chi^{2} \zeta \partial_{10}{ }^{6} \varphi_{30}-h^{-1 / 2} 2\left\{c_{6} \zeta\left(x \partial_{10}{ }^{4} \varphi_{31}+c_{25} k_{g} \partial_{10}{ }^{5} \varphi_{30}\right)+\right.$
$\left.c_{5} k_{g} k_{80} \partial_{10}{ }^{3} \varphi_{30}\right]+\ldots$
$\sigma_{s s}=-h^{-12}\left(c_{5} k_{50} \partial_{10}{ }^{4}+\boldsymbol{x}_{5}^{\zeta} c_{4} \partial_{10}{ }^{6}\right) \varphi_{30}+h^{-1 / 2}\left\{-c_{6} \zeta\left(c_{1} \partial_{10}{ }^{\theta} \varphi_{31}+\right.\right.$
$\left.c_{53} k_{g} \partial_{10}{ }^{5} \varphi_{30}\right)+2 c_{5}\left[2 m_{0} \partial_{10}{ }^{3} \partial_{2}-\xi\left(\partial k_{5} / \partial n\right)_{0} \partial_{10}{ }^{4}-\right.$
$\left.\left(k_{k} k_{n 0}-2\left(\partial k_{s} / \partial n\right)_{0}\right) \partial_{10}{ }^{3} \mathrm{I} \varphi_{30}-2 c_{5} k_{s} \partial_{10}{ }^{4} \varphi_{31}\right\}+\ldots$
$\sigma_{33}=\left(\zeta^{2}-1\right)\left\{c_{6}\left[\left(x H_{0}-k_{s 0} / 2\right) \partial_{10}{ }^{5}-\frac{1}{3} x_{5}^{5} \partial_{10}{ }^{8}\right] \varphi_{30}+\cdots\right\}$
$\sigma_{n 3}=\left(\zeta^{2}-1\right)\left[h^{-1 / 2} 2 x^{2} \partial_{10}{ }^{7} \varphi_{30}+2 x^{2}\left(\partial_{10}{ }^{7} \varphi_{31}+3 k_{g} \partial_{10}{ }^{6} \varphi_{30}\right)+\ldots\right]$
$\sigma_{n s}=h^{-1 / 2} 2\left[c_{5} \partial_{10}{ }^{3} \partial_{2}\left(k_{s 0} \varphi_{30}\right)-x \zeta \partial_{10}{ }^{5} \partial_{2} \varphi_{30}\right]+\cdots$
$\sigma_{s 3}=\left(\zeta^{2}-1\right)\left(2 x^{2} \partial_{10}{ }^{6} \partial_{2} \varphi_{3 B}+\ldots\right)$,
$u_{72}{ }^{*}-h^{-1 / 2}\left\lceil\left(x H_{0}-k_{s 0} / 2\right) \partial_{10}{ }^{3}-x \zeta \partial_{10}{ }^{5}\right] \varphi_{30}+\cdots$
$u_{s}{ }^{*}=h^{-1 / z_{6}} m_{0} \partial_{10}{ }^{3} \varphi_{30}+\ldots$,
$u_{3}{ }^{*}=h^{-1} x \partial_{10}{ }^{4} \varphi_{30}+h^{-1 / 2 x}\left(\partial_{10}{ }^{4} \varphi_{31}+2 k_{g} \partial_{10}{ }^{3} \varphi_{30}\right)+\ldots$
For small h we find from (3.7)

$$
\begin{align*}
& \varphi_{30}=\psi_{0}, \varphi_{31}=\psi_{1}-\xi\left[\left(\psi_{0}\right)_{x}^{\prime}+\left(E_{1}+E_{2}\right) \psi_{0}\right]+\xi^{2} E_{1} \partial_{10} \psi_{0} \tag{3.9}\\
& f=m_{0} / k_{30} \\
& \psi_{k}=\frac{3}{64} x^{-2} \gamma^{-6} I\left(M_{k}-Q_{k} / \gamma\right) \cos \gamma \xi+M_{k} \sin \gamma \xi \xi \exp (\gamma \xi),
\end{align*}
$$

$$
\begin{aligned}
& X_{1,1}=k_{n}{ }^{*}\left(c_{25} k_{n}-x k_{\mathrm{s}}\right)-\left(c_{3} k_{\mathrm{s}}+x H\right)_{n}{ }^{\prime}, \quad Y_{1}=2 x k_{n}{ }^{*}, \\
& Y_{2}=2 x\left(A_{2}\right)_{s}{ }^{\prime} \\
& X_{2,1}=A_{2}\left(c_{6} H+j_{5} k_{5}\right)_{3}{ }^{\prime}-5 x m_{n}{ }^{\prime}, \quad A_{33,1}^{k} M_{3 k}=2 c_{5}\left\{k_{k}{ }^{2} d_{1}{ }^{4}-\right. \\
& 4 k_{s} m d_{1}^{3} d_{2}+\left(2 k_{n} k_{s}+4 m^{2}\right) d_{1}^{2} d_{2}^{2}-4 k_{n} m d_{1} d_{2}^{3}+k_{n}^{2} d_{2}^{4}+ \\
& 2\left[k_{n}{ }^{*} k_{s}{ }^{2}-A_{2}\left(m k_{s}\right)_{s}{ }^{\prime}\right] d_{1}{ }^{3}+2\left[\left(A_{2} k_{n} k_{s}+2 A_{2} m^{2}\right)_{s}{ }^{\prime}+\left(m k_{s}\right)_{n}{ }^{\prime}+\right. \\
& \left.\left.2 k_{s}\left(m_{n}{ }^{\prime}-A_{2} H_{s}{ }^{\prime}\right)\right] d_{1}{ }^{2} d_{2}+\ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=\sqrt{c k_{s 0} / 2} \\
& E_{1}=\left(4 k_{s 0}\right)^{-1}\left[\left(\partial k_{s} / \partial n\right)_{0}+f\left(\partial k_{s} / \partial s\right)_{0}\right], \\
& E_{2}=\left(2 k_{\mathrm{s} 0}\right)^{-1}\left[{ }^{\prime}\left(\partial k_{s} / \partial n\right)_{0}+k_{g} k_{n 0}\right]
\end{aligned}
$$

where $M_{k}=M_{k}(s), Q_{k}=Q_{k}(s)$ are functions determined from the boundary conditions on Γ_{2}.
4. Boundary-layer type of state of stress and strain. We shall seek lie decaying solution of the system (2.1) that is characterized by the asymptotic relations (3.1) for $v_{1}=1, v_{2}=0$. To this end, we expand the coefficients of (l.1) in a power series in n and ζ and stretch the scale. We finally obtain

$$
\begin{align*}
& \left(v_{1}^{*}\right) \xi^{\prime}-\sigma_{13}+\partial_{11} v_{3} *+h F_{1}+\ldots=0, \tag{4.1}\\
& \left(v_{2}^{*}\right) \xi^{\prime}-\sigma_{23}+h F_{2}+\ldots=0 \\
& \left(v_{3}^{*}\right) \xi_{\xi}^{\prime}+f_{4} \sigma_{33}+c_{4} \partial_{11} v_{1}^{*}+h F_{3}+\ldots=0, \\
& \left(\sigma_{33}\right)_{\xi^{\prime}}^{\prime}+\partial_{11} \sigma_{13}+h F_{6}+\ldots=0 \\
& \left(\sigma_{13}\right)_{\zeta}^{\prime}+c_{4} \partial_{11} \sigma_{33}+4 x \partial_{11}^{2} v_{1}^{*}+h F_{4}+\ldots=0, \\
& \left(\sigma_{23}\right)_{6}^{\prime}+\partial_{11} v_{2} v_{2}+h F_{5}+\ldots=0 \\
& \sigma_{12}=\partial_{11} v_{2}^{*}+h F_{7}+\ldots, \quad \sigma_{11}=c_{4} \sigma_{33}+4 x \partial_{11} v_{1}^{*}+h F_{8}+\ldots \tag{4.2}\\
& \sigma_{22}=c_{4} \sigma_{33}+2 c_{4} \partial_{11} v_{1}^{*}+h F_{9}+\ldots, \quad v_{j}^{*}=u_{j}^{*} / h \quad(j=1,2,3) \\
& n=h \rho, \quad \partial_{1}=h^{-1} \partial_{11}, \quad \partial_{11} \equiv \partial / \partial \rho, \quad F_{1}=k_{n u}\left(v_{1}{ }^{*}+\zeta \partial_{11} v_{3}^{*}\right) \text { and so on. }
\end{align*}
$$

Seeking the unknowns v_{j}^{*} and $\sigma_{3 j}$ in the form of the series

$$
v_{j}^{*}=\sum_{r=0}^{\infty} h^{r} v_{j, r}^{*}, \quad \sigma_{3 j}=\sum_{r=0}^{\infty} h^{r} \sigma_{3 j, r} \quad(j=1,2,3)
$$

and integrating (4.1) under the initial conditions

$$
\begin{aligned}
& \left.v_{1,0}^{*}\right|_{t=0}=v_{j} \equiv u_{j} / h,\left.\quad \sigma_{3 j, 0}\right|_{5=0}=\sigma_{j},\left.\quad v_{j, k}^{*}\right|_{\xi=0}=\sigma_{3 j},\left.k\right|_{t=0}=0 \\
& (k=1,2, \ldots)
\end{aligned}
$$

we successively find $v_{3, k}^{*}$ and $\sigma_{3 j, k}(k=0,1,2, \ldots)$
$u_{n}^{*} / h=1 / 2\left(x z \cos z-f_{2} \sin z\right) \sigma_{1} / \partial_{11}-1 /{ }_{2} x z \sin z \sigma_{3} / \partial_{11}+$
$(\cos z-x z \sin z) v_{1}+\left(f_{1} \sin z-x z \cos z\right) v_{3}+h v_{1,1}^{*}+\ldots$
$u_{s}^{*}{ }^{*} / h=\sin z \sigma_{2} / \partial_{11}+\cos z v_{2}+h v_{2,1}^{*}+\ldots$
$u_{3} * / h=-1 / 2 x z \sin z \sigma_{1} / \partial_{11}-1 / 2\left(x z \cos z+f_{2} \sin z\right) \sigma_{3} / \partial_{11}-$
$\left(f_{4} \sin z+x z \cos z\right) v_{1}+(\cos z+x z \sin z) v_{3}+h v_{3,1}^{*}+\ldots$
$\sigma_{n 3}=(\cos z-x z \sin z) \sigma_{1}-\left(f_{4} \sin z+x z \cos z\right) \sigma_{3}-$
$2 x(\sin z+z \cos z) \partial_{11} v_{1}+2 x z \sin z \partial_{11} v_{3}+h \sigma_{n 3,1}+\ldots$
$\sigma_{s 3}=\cos z \sigma_{2}-\partial_{11} \sin z v_{2}+h \sigma_{s 3,1}+\ldots$
$\sigma_{33}=\left(f_{4} \sin z-x z \cos z\right) \sigma_{1}+(\cos z+x z \sin z) \sigma_{3}+$
$2 x z \sin z \partial_{11} v_{1} \mid 2 x(z \cos z-\sin z) \partial_{11} v_{3}+h \sigma_{33,1}+\ldots$
Taking account of (4.3) and (4.4), we find from (4.2)

$$
\begin{aligned}
& \sigma_{n n}=\left(f_{8} \sin z+x z \cos z\right) \sigma_{1}+\left(c_{4} \cos z-x z \sin z\right) \sigma_{3}+ \\
& \quad 2 x(2 \cos z-z \sin z) \partial_{11} v_{1}-2 x(\sin z+z \cos z) \partial_{11} v_{3}+h \sigma_{n n, 1}+\ldots \\
& \sigma_{s s}-c_{4}\left(\sin z \sigma_{1}+\cos z \sigma_{3}+2 \partial_{11} \cos z v_{1}-2 \partial_{11} \sin z v_{3}\right)+h \sigma_{s s, 1} \mid \ldots \\
& \sigma_{n s}=\sin z \sigma_{2}+\partial_{11} \cos z v_{2}+h \sigma_{n s, 1}+\ldots \quad\left(z \equiv \zeta \partial_{11}\right)
\end{aligned}
$$

Moreover, let the unknowns v_{j} and σ_{j} be determined by the asymptotic expansions

$$
\begin{align*}
& v_{j}=\sum_{k=0} h^{k / 2} v_{j}, k, \quad \sigma_{r}=\sum_{k=0} h^{k / 2} \sigma_{r, k}, \quad \sigma_{2}=h^{-1} \sum_{k=0} h^{k / 2} \sigma_{2, k} \tag{4.6}\\
& (r=1,3 ; j=1,2,3)
\end{align*}
$$

We note that since the stress $\sigma_{n j}$ of the simple edge effect is described by a power series in $h^{1 / 4}$ and are used in satisfying the boundary conditions on Γ_{2}, then the asymptotic expansions (2.10) and (4.6) should also have the same configuration.

Now, taking account of (4.4) and (4.6), we obtain the principal boundary-layer equations from (2.1)

$$
\begin{aligned}
& \left(\cos \partial_{11}-x \partial_{11} \sin \partial_{11}\right) \sigma_{1, l}+2 x \partial_{11}{ }^{2} \sin \partial_{11} v_{3, l}=0 \\
& \left(f_{4} \sin \partial_{11}-x \partial_{11} \cos \partial_{11}\right) \sigma_{1, l}+2 x\left(\partial_{11}{ }^{2} \cos \partial_{11}-\partial_{11} \sin \partial_{11}\right) v_{3, l}=0 \\
& \left(f_{4} \sin \partial_{11}+x \partial_{11} \cos \partial_{11}\right) \sigma_{3, l}+2 x\left(\partial_{11} \sin \partial_{11}+\partial_{11}{ }^{2} \cos \partial_{11}\right) v_{1, l}=0 \\
& \left(\cos \partial_{11}+x \partial_{11} \sin \partial_{11}\right) \sigma_{3, l}+2 x \partial_{11}{ }^{2} \sin \partial_{11} v_{1, l}=0 \\
& \cos \partial_{11} \sigma_{2, l}=0, \quad \partial_{11} \sin \partial_{11} v_{2, l}=0 \quad(l=0,1)
\end{aligned}
$$

Determining the unknowns $\sigma_{f, l}$ and $v_{j, t}$ from (4.7), and then substituting (4.6) into (4.3) (4.5), we obtain asymptotic expansions of the boundary-layer type components of the state of stress and strain

$$
\begin{align*}
& \sigma_{i j}=\sum_{l=0} \sum_{k=1}^{\infty} h^{l / 2} \sigma_{i, l}^{(k)}, \quad \sigma_{r^{2}}=h^{-1} \sum_{i=0} \sum_{k=1}^{\infty} h^{l / 2} \sigma_{r 2, l}^{(k)} \quad\left(r=1,3 ; i j \neq r^{2}\right) \tag{4.8}\\
& u_{r}{ }^{*}=h \sum_{l=0} \sum_{k=1}^{\infty} h^{l / 2} u_{r, l}^{(k)}, \quad u_{2}{ }^{*}=\sum_{l=0} \sum_{k=1}^{\infty} h^{l / 2} u_{2, l}^{(k)} \\
& \sigma_{n n, l}^{(k)}=c_{6}\left[C_{k, l}^{*}\left(\Psi_{k}^{(2)}-2 \cos z_{k} \zeta\right)+D_{k, l}^{*}\left(\Psi_{k}^{(4)}+2 \sin \theta_{k} \zeta\right)\right]+ \\
& 2 x_{k}^{-1}\left(m_{0} \cos x_{k} \zeta-\partial_{2} \sin x_{k} \zeta\right) A_{k, l}^{*}, \quad \sigma_{n s, l}^{(k)}=A_{k, l}^{*} \sin x_{k} \zeta \\
& \sigma_{n, 2+l}^{(k)}=A_{k, 2+l}^{*} \sin x_{k} \zeta+B_{k, l}^{*} \cos y_{k} \zeta+\mathbf{1}_{2} A_{k, l}^{*}\left\{\operatorname { c o s } x _ { k } \zeta \left[k_{n 0} x_{k}\left(\zeta^{2}-1\right)+\right.\right. \\
& \left.\left.3 k_{\mathrm{s} 0} / x_{\mathrm{k}}\right]+\sin x_{k} \zeta\left\{\left(k_{\mathrm{s} 0}+2 k_{n 0}\right) \zeta-k_{\mathrm{g}}\left(\rho+3 / x_{k}\right)\right\}\right\}, \\
& \sigma_{s, l}^{(k)}=A_{k, l}^{*} \cos x_{k} \zeta \\
& \sigma_{n, l}^{(k)}=c_{6}\left(C_{k, l}^{*} \Psi_{h}^{(1)}-D_{k, l}^{*} \Psi_{k}^{(3)}\right)-x_{k}^{-1} \partial_{2} \cos x_{k} \zeta A_{k, l}^{*}, \\
& A_{k, l}^{*}=A_{k, 2} \exp \left(x_{k} \rho\right) \\
& \sigma_{33, l}^{(k)}=-c_{6}\left(C_{k, l}^{*} \Psi_{k}^{(2)}+D_{k, l}^{*} \Psi_{k}^{(4)}\right)+2 m_{0} x_{k}^{-1} \cos x_{k} \zeta A_{k, l}^{*}, \\
& B_{k, l}^{*}=B_{k, l} \exp \left(y_{k} \rho\right) \\
& \sigma_{s 3,2+l}^{(k)}=A_{k, 2+l}^{*} \cos x_{k} \zeta-B_{k, l}^{*} \sin y_{k} \zeta+1 / 2 A_{k, l}^{*}\left\{\operatorname { c o s } x _ { k } \zeta \left[\left(k_{s 0}+2 k_{n}\right) \zeta-\right.\right. \\
& \left.\left.\rho k_{g}\right]+x_{k} k_{n 0}\left(1-\zeta^{2}\right) \sin x_{k} \zeta\right\}, \\
& \sigma_{s s, l}^{(k)}=2 c_{4}\left(D_{k, l}^{*} \sin \theta_{k} \zeta-C_{k, l}^{*} \cos z_{k} \zeta\right) \\
& 2 x_{k}^{-1}\left(2 v m_{0} \cos x_{k} \xi+\partial_{2} \sin x_{k} \xi\right) A_{k, l}^{*}, \quad u_{s, l}^{(k)}=x_{k}^{-1} A_{k, l}^{*} \sin x_{k} \xi \\
& u_{s, 2+l}^{(k)}=x_{k}^{-1} A_{k, 2+l}^{*} \sin x_{k} \zeta+y_{k}^{-1} B_{k, l}^{*} \cos y_{k} \zeta+ \\
& { }_{1 / 2} A_{k, l}^{*}\left\{k_{n 0}\left(\zeta^{2}-1\right) \cos x_{k} \zeta-\rho k_{\xi} \sin x_{k} \zeta / x_{k}+\right. \\
& \left.k_{s 0}\left(\zeta \sin x_{h} \zeta / x_{k}+3 \cos x_{k} \zeta / x_{k}{ }^{2}\right)\right\} \\
& u_{3, l}^{(k)}=C_{k, l}^{*} z_{k}^{-1}\left(x \Psi_{k}^{(1)}-\sin z_{k} \zeta\right)-D_{k, i}^{*} \theta_{k}^{-1}\left(x \Psi_{k}^{(3)}+\cos \theta_{k} \zeta\right)+ \\
& (1-2 v) m_{0} x_{k}^{-2} \sin x_{k} \zeta A_{k, l}^{*} \\
& u_{n, l}^{(k)}=C_{k, i}^{*} z_{k}^{-1}\left(x \Psi_{k}^{(2)}-\cos z_{k} \zeta\right)+D_{k, i}^{*} \theta_{k}^{-1}\left(x \Psi_{k}^{(4)}+\sin \theta_{k} \zeta\right)+ \\
& x_{k}^{-2}\left[(1-2 v) m_{0} \cos x_{k} \zeta-\partial_{2} \sin x_{k} \zeta\right] A_{k, l}^{*} \quad(l=0,1) \\
& \Psi_{k}^{(2)}=z_{k} \zeta \sin z_{k} \zeta+\sin ^{2} z_{k} \cos z_{k} \zeta, \quad z_{k} \Psi_{k}^{(1)}=\partial \Psi_{k}^{(2)} / \partial \zeta, \\
& C_{k, l}^{*}=C_{k, l} \exp \left(z_{k} \rho\right) / \cos z_{k} \\
& \Psi_{k}^{(4)}=\theta_{k} \zeta \cos \theta_{k} \zeta-\cos ^{2} \theta_{k} \sin \theta_{k} \zeta, \quad \theta_{k} \Psi_{k}^{(3)}=-\partial \Psi_{k}^{(4)} / \partial \zeta, \\
& D_{k, l}^{*}=D_{k, l} \exp \left(0_{k} \rho\right) / \sin 0_{k}
\end{align*}
$$

Here the numbers $x_{k}, y_{k}, z_{k}, \theta_{k}$ are nonzero roots of the appropriate equations

$$
\cos x=0, \sin y=0, \sin 2 z=-2 z, \quad \sin 2 \theta=2 \theta \quad\left(x_{k}>0, \ldots, \text { Re } \theta_{k}>0\right)
$$

and the functions $A_{k, l}=A_{k, l}(s), \ldots, D_{k, l}=D_{k, l}(s)$ are to be determined from the boundary conditions on Γ_{2}.

In a first approximation the relations (4.8) agree with the homogeneous solutions obtained in slab theory $/ 8,9 /$, and for $n=0$ the following hold

$$
\begin{align*}
& \int_{-1}^{1} \sigma_{n n, l}^{(k)}(C, D) d \zeta=0, \quad \int_{-1}^{1} \sigma_{n s, l}^{(k)}(A) d \zeta=0, \quad \int_{-1}^{1} \sigma_{n s, 2+l}^{(k)}(B) d \zeta=0 \tag{4.9}\\
& \int_{-1}^{1} \sigma_{n, l}^{(k)}(C, D) d \zeta=0, \quad \int_{-1}^{1} \sigma_{n n, l}^{(k)}(C, D) d \zeta=0 \quad(l=0,1 ; k=1,2, \ldots)
\end{align*}
$$

Here, for instance, only that part of the expression $\sigma_{n n, l}^{(k)}$ which is proportional to the functions $C_{k, l}$ and $D_{k, l}$ is denoted by $\sigma_{m m, l}^{(k)}(C, D)$.

It follows from (4.9) that the system of stresses originating on the boundary Γ_{2} is selfequilibrated over the shell thickness in a first approximation, and therefore, the state of stre-- of boundary-layer type is a Saint-Venant edge effect.
5. Satisfaction of the boundary conditions. We examine the problem of complete reduction of the system of external stresses from the endface surface Γ_{2}. We seek the general solution of this problem in the form of a sum of the internal state of stress and strain (1), the simple shell edge effect (2) and the Saint-Venant type boundary layers (3)

$$
\begin{equation*}
u_{i}^{*}=u_{i}^{*(1)}+u_{i}^{*(2)}+u_{i}^{*(3)}, \quad \sigma_{i k}=\sigma_{i k}^{(0)}+\sigma_{i k}^{(2)}+\sigma_{i k}^{(3)} \tag{5.1}
\end{equation*}
$$

The stresses and displacements in (5.1) are given by (2.12), (3.8) and (4.8). By virtue of (5.1) the boundary conditions (2.2) become

$$
\begin{aligned}
& \left.\sigma_{n p}\right|_{n=0}=h^{-1} \sigma_{n p, 0}^{0}+h^{-1 / 2} \sigma_{n p, 1}^{0}+\sigma_{n p, 2}^{0}+\ldots=q_{p, 0}+h^{2 / 2} q_{p, 1}+\ldots \\
& \left.\sigma_{n^{3}}\right|_{n=0}=h^{-1 / 2} \sigma_{n 3,1}^{0}+\sigma_{n 3,2}^{0}+\ldots=q_{3,1}+h^{1 / 2} q_{3,1}+\ldots \\
& \left(q_{k}=\sum_{r=0} h^{r / 2} q_{k, r}\right)
\end{aligned}
$$

Hence, equating the expressions for h^{-1} and $h^{-1 / 2}$ to zero, we find

$$
\begin{align*}
& Q_{0}=0, \quad M_{0}=\left.G_{n, 0}\right|_{n=0}, \quad A_{k, 0}=-3 x_{k}^{-2} \sin x_{k} I_{s n},\left.0\right|_{n=0} \tag{5.3}\\
& M_{1}=\left.\left\{G_{n, 1}+6 \partial_{2}\left(f G_{n, 0} / \gamma\right)+\left[6 E_{2}-24 E_{1}-(2+v) k_{g}\right] G_{n, 0} / \gamma\right\}\right|_{n=0} \\
& A_{k, 1}=3 x_{k}-\left.2 \sin x_{k}\left[-H_{s n, 1}-(v-1) \partial_{2}\left(G_{n, 0} / \gamma\right)\right]\right|_{n=0}(k=1,2, \ldots \infty)
\end{align*}
$$

Moreover, taking account of (4.9) and integrating (5.2) with respect to ζ, we obtain a system of boundary conditions for solutions of the type (1) and (2)

$$
\begin{align*}
& \int_{-1}^{1}\left(\sigma_{n j, 2+r}^{0}-q_{j, r}\right) d \zeta=0, \quad \int_{-1}^{1} \zeta\left(\sigma_{n n, 3+r}^{0}-q_{1, r}\right) d \zeta=0 \tag{5.4}\\
& (j=1,2,3 ; r=0,1,2, \ldots)
\end{align*}
$$

Hence, for $r=0$ it follows

$$
\begin{align*}
& \left.\left\{T_{n, 0}^{\prime}-N_{n, 0}^{\prime} k_{i} / k_{s 0}-\left(m_{s}{ }^{\prime} k_{g} / k_{s 0}-m_{0}{ }^{2}+2 k_{g} f \partial_{2}+\partial_{2}{ }^{2}\right)\left(G_{n, 0} / k_{s 0}\right)\right\}\right|_{n=0}= \tag{5.5}\\
& T_{0}{ }^{*}-N_{0} k_{k_{g}} / k_{s 0} \quad\left(T_{n, 0}^{\prime}=T_{n, 0}-m H_{s n_{0} 0}, \quad N_{n, 0}^{\prime}=N_{n, 0}-\partial_{2} H_{s n, 0}\right) \\
& \left\{S_{s n, 0}^{\prime}+m_{0} G_{n, 0}+\partial_{2}\left[N_{n, 0}^{s} / k_{s 0}+\left(m_{s}^{\prime} / k_{s 0}+2 f \partial_{2}\right)\left(G_{n, 0} / k_{s 0}\right)\right]-\right. \\
& \left.k_{g} \partial_{2}\left(G_{n, 0} / k_{s 0}\right)\right\}\left.\right|_{n=0}=S_{0}^{*}+\bar{\partial}_{2}\left(N_{0}{ }^{*} / k_{s}\right) \quad\left(S_{s n, 0}^{\prime}=S_{s n, 0}-k_{s} H_{s n, 0}\right) \\
& Q_{1}=\left[\left(7 E_{2}-35 E_{1}-3 k_{g}\right) G_{n, 0}+7 \partial_{2}\left(f G_{n, 0}\right)+\left.N_{n, 0}^{\prime}\right|_{n=0}-N_{0}{ }^{*}\right. \\
& T_{0}{ }^{*}=\int_{-1}^{1} q_{1,0} d \zeta . \quad S_{0}{ }^{*}=\int_{-1}^{1} q_{2,0} d \zeta, \quad N_{0}{ }^{*}=-\int_{-1}^{1} q_{3,0} d \zeta
\end{align*}
$$

Here $T_{n, 0}^{\prime}, S_{s n, 0}^{\prime}, N_{n, 0}^{\prime}$ are reduced edge forces $/ 4 /$. For determination of functions $B_{k, 0}, C_{k, 0}, D_{k, 0}$ in (4.8), we use the Lagrange principle of possible displacements. Since homogeneous solutions satisfy the equilibrium equations and boundary conditions on Γ_{1}, then the variational equation takes the form

$$
\begin{align*}
& \int_{\Gamma_{2}}\left(\sigma_{n n} \delta u_{n}^{*}+\sigma_{n s} \delta u_{s}^{*}+\sigma_{n 3} \delta u_{3}^{*}\right) d \sigma-\int_{\Gamma_{2}}\left(q_{1} \delta u_{n}^{*}+\eta_{2} \delta u_{s}^{*}+q_{3} \delta u_{3}^{*}\right) d \sigma \tag{5,6}\\
& d \sigma=\left\{\left(1-k_{s 0} t\right)^{2}+m_{0}{ }^{2} t^{2}\right\}^{1 / 2} d t d s
\end{align*}
$$

Varying the functions $B_{k, 0}(k==1,2, \ldots \infty)$, we obtain from (5.6)

$$
\begin{equation*}
B_{k, 0}=\int_{-1}^{!} q_{2,0} \cos y_{k} \zeta d \zeta+\left.6 y_{k}^{-2} \cos y_{k}\left[\left(k_{n 0}-\frac{3}{4} k_{s 0}\right) H_{s n, 0}+m_{0}\left(G_{s, 0}-v G_{n, 0}\right) c_{14} / c_{34}\right]\right|_{n=0} \tag{5.7}
\end{equation*}
$$

As is seen from (4.8), the stresscs $\sigma_{n n, l}^{(k)}$ and $\sigma_{n 3, l}^{(k)}(l=0,1)$ are proportional to the coefficient $x(0.5 \leqslant x \leqslant 1)$. By varying the function $C_{k, 0}$ and $D_{k, 0}$ and obtaining a system of linear algebraic equations from (5.6) for $x=0.5$, this permits construction of an appropriate system for an arbitrary value of x. We have

$$
\begin{align*}
& C_{k, 0}\left(1-\frac{2}{3} \sin ^{2} z_{k}\right) z_{k}^{-1}+8 \sum_{\substack{m=1 \\
m \neq h}}^{\infty} C_{m, 0} z_{k} z_{m}\left(\sin ^{2} z_{k}-\sin ^{2} z_{m}\right)\left(z_{k}-z_{m}\right)^{-3}\left(z_{k}+z_{m}\right)^{-2}= \tag{5.8}\\
& \quad\left(2 x z_{k} \cos z_{k}\right)^{-1}\left\{\int _ { - 1 } ^ { 1 } \left[q_{1,0}\left({ }^{1} / 2 \Psi_{k}^{(2)}-\cos z_{k} \zeta\right)+\right.\right.
\end{align*}
$$

$$
\begin{aligned}
& \left.\left.q_{3,0}\left(1 / 2 \Psi_{k}^{(1)}-\sin z_{k} \zeta\right)\right] d \zeta+3\left[k_{30}\left(v G_{n, 0}-G_{s, 0}\right) c_{4} / c_{34}+8 m_{0} H_{s n}, 0\right] z_{k}^{-3} \sin z_{k}\right\}\left.\right|_{n-0} \\
& D_{k, 0}\left(1-\frac{2}{3} \cos ^{2} \theta_{k}\right) \theta_{k}^{-1}+8 \sum_{\substack{m=1 \\
m \neq k}}^{\infty} D_{m, 0} \theta_{k} \theta_{m}\left(\cos ^{2} \theta_{k}-\cos ^{2} \theta_{m}\right)\left(\theta_{k}-\theta_{m}\right)^{-3}\left(\theta_{k}+\theta_{m}\right)^{-2}= \\
& \quad\left(2 x \theta_{k} \sin \theta_{k}\right)^{-1}\left\{\int _ { - 1 } ^ { 1 } \left[q_{1,0}\left({ }^{1 / 2} \Psi_{k}^{(1)}+\sin \theta_{k} \zeta\right)-\right.\right. \\
& \\
& \left.q_{3,0}\left(1 / 2 \Psi_{k}^{(3)}+\cos \theta_{k} \zeta\right)\right] d \zeta-6 N_{0} * \cos ^{-3} \theta_{k}- \\
& \left.12 \partial_{2} H_{s n, 0} \theta_{k} \cos \theta_{k} \sum_{r=1}^{\infty} x_{r}^{-1}\left(x_{r}^{2}-\theta_{k}^{2}\right)^{-2}\right\}\left.\right|_{n=0} \quad(k=1,2, \ldots \infty)
\end{aligned}
$$

The systems (5.8) encountered in slab theory are always solvable, and the method of truncation $/ 8,9 /$ is used for their solution.

Let us indicate the sequence of seeking solutions of the type (1), (2) and (3). When the forces $T_{0}{ }^{*}, S_{0}{ }^{*}, N_{0}{ }^{*}$ on Γ_{2} are not simultaneously zero, we find firstly the quantities $T_{p, 0}, S_{q p, 0}$, $N_{p, 0}, G_{p, 0}, H_{u 1,0} \quad$ characterizing the internal state of stress by integrating the differential equations (2.16) in combination with the boundary conditions (5.5). Then by using the boundary conditions (5.3) and (5.5) as well as the infinite systems (5.7) and (5.8), we determine the functions M_{0}, Q_{1} and the functions $A_{k, 0}, B_{k, 0}, C_{k, 0}, D_{k, 0}(k=1,2, \ldots \infty)$ comprising the arbitraxiness of the solutions of the simple edge effect equations and the boundary-layer equations, respectively. If $T_{0}{ }^{*}=S_{0}{ }^{*}=N_{0}{ }^{*}=0$ on the shell edge, then as follows from (2.16), (5.3) and (5.5), the quantities $T_{p, 0}, S_{q p, 0}, N_{p, 0}, G_{p, 0}, H_{21,0}, M_{0}, Q_{1}$ must be set equal to zero and the computation must be started with the boundary-layer, i.e., with the solution of the systems (5.7), (5.8).

It is expedient to consider the relations (2.12)-(2.16) and (3.7)-(3.9) resulting from the solution of a three-dimensional problem of elasticity theory together with the boundary conditions (5.3)-(5.5) as a system of "two-dimensional" equations of the refined applied theory intended to reduce the stress from the endface surface l_{2}^{\prime}. By assuming a boundary-layer type solution (4.8) here, the boundary conditions on Γ_{2} can be satisfied more exactly than in the integral sense. We note that the results of this paper are valid even for shells of zero and negative curvature if only the contour Γ bounding the middle surface of these shells has a non-asymptotic direction throughout.

REFERENCES

1. BAZARENKO N.A., Construction of refined applied theories for a shell of arbitrary shape, PMM, Vol.44, No.4, 1980.
2. LUR'E A.I., Three-dimensional Problems of Elasticity Theory. Gostekhizdat, Moscow, 1955.
3. LUR'E A.I., On the theory of thick plates, PMM, Vol.6, Nos. 2-3, 1942.
4. GOL'DENVEIZER A.L., Theory of Elastic Thin Shells, English translation, Pergamon Press, Book No. O9561, 1961.
5. LUR'E A.I., Determination of displacements according to a given strain tensor, PMM, Vol.4, No.1, 1940.
6. BAZARENKO N.A., Construction of a refined theory of spherical shell analysis. In: Investigation, Design, and Production of Agricultural Machine Working Parts, RISKhm, Rostov-onDon, 1977 (Rostov. Inst. Selsko-Khoziaist. Mashinostr.).
7. VISHIK M.I. and LIUSTERNIK L.A., Regular degeneration and boundary layer for linear differential equations with a small parameter, Usp. Matem. Nauk, Vol.12, No.5, 1957.
8. AKSENTIAN O.K. and VOROVICH I.I., State of stress in a thin plate, PMM, Vol.27, No.6, 1963.
9. VOROVICH I.I. and MALKINA O.S., Asymptolic method of solving problem of elasticity theory for a thick slab, In: Trudy, 6-th All-Union Conf. on the Theory of Shells and Plates, Baku, 1966, NAUKA, Moscow, 1966.

[^0]: *Prikl.Matem.Mekhan.,46,No.3,pp.445-455, 1982

