
PMM u.S.S.R.,vo1.46,pp.347-355 

Copyright Pergamon Press Ltd.1983.Printed in U.K. 

0021-8928/83/30347$7.50/O 

UDC 539.3 

ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF ELASTICITY THEORY PROBLEM 

FOR SHELL OF POSITIVE CURVATURE AND SMALL THICKNESS* 

N.A. BAZAREXiKO 

The state of stress and strain of a shell of positive curvature with one edge sub- 

jected to the effect of a sufficiently smooth load applied to the endface surfaceis 

studied. The case is investigated when the shell thickness is slight. Itisproved 

that the shell state of stress consists of three parts: 1) the internal state of 

stress that does not possess the property of decay and encloses all domains of the 

shell body, 2) the slowly decaying state of stress (simple edge effect of shells), 

and 3) the rapidly decaying state of stress of boundary-layer type. Asymptotic ex- 

pansions are presented for the components of states of stress and strainofthetypes 

1) I 2) and 3). Boundary conditions are formulated for each part of the solution 

constructed. A system of "two-dimensional" equations of the refined applied theory 

of shells is obtained on the basis of the solution of a three-dimensional problemof 

elasticity theory. 

1. Initial equations. Let V be the domain of space filled with shell material, R is 
the radius-vector of a running point in this domain, S is the shell middle surface, r = r(a, fJ) 

is some orthogonal parametrization of this surface, n is the normal direction to the surface 

S. Then the transformation equation R = r + nt yields a semi-orthogonal curvilinear co- 

ordinate system ti,x2,xSin the domain V (a G x1, fl= x2, t= x”). 
We introduce an orthonormal coordinate basis (i,, i,,i,), where i,,i, arethetangent direc- 

tions to the coordinate lines x2, x3 while i, =i, X i, is the normal direction to the coordin- 

ate surface z? = Const. We denote the stress tensor components by oilr* and the coordinates of 

the displacement vector by uk * in this reference system. We take the elasticity theory equa- 

tions in a semi-orthogonal coordinate system obtained in /l/, and represented as follows 

(~*)t'=%~- &up* - &,zo=~* - Dpu3* (p#q= 1,2) 

(UQ*)t'=C4 I(51 + 52) Q* - B(%*, &,*)I --fd(TS3 

@3p)t'= (5, + 25p)%p + &%%* - 2g,g,zc,* + 

(6, - l)Dq@(uz, * - UI*) + DP(aBs - c&*) + 2 (zoDq-- &Dp)u3* 

(At = 2 (51 + 52) (Gs - he*) - 0 (%I, u32) - 4g,g,us* + 

2 (520% - zoD2 + GGZ + &) UI* +- 2 (~~D~-z~D’+z~z~ +z&)u2* 

U pp = 2 (D=‘u,* + zqus* - cpus* -j-f&*) 

- (D’ - zl) us* + (D’ - 22) ul* - 2z,u,* 

~~zs~, + 2 [El ( ul*, uz*) - (cl +- 5~ u,*i, e b,, w2) E 
CD’ + ~1) WI + (0’ + 2s) 702 

(1.1) 

D1 = l&z! a:aa - k*$V/g&,) m/k D2 = (l/f/g,) I%?$, 

6, = 1 + (-1)P 

g = det II gi, II> gp = kpl(l - kpt)r (~ik = oik*/p, 2% = (1 - Y)-' 

c,, = (1 + r) x - 3 +s/2, cos = fs, cls = cs(rr s = 0, 1, 2, . . 9) 
as the initial relations. 

Here gi, are the metric tensor components, k, and k, are the principal curvatures of the 

surface s, p is the shear modulus, and v is the Poisson's ratio. The functions zp and i& 
satisfy the Gauss-Peterson-Codazzi equations 

Dq&-- Dpz,, = 2z0zp+ z&, - &Jr g,g,=-q*-~~~--D~q- D2z1 (1.2) 

(5p)t’ = 5p* + (26, - 1) G2? (Q’ = z&a + ‘12 (6,D’% - 6pDp5~) 

(d’ = 2%L 51 + 52 = g, + g.23 202= 5152-g1g2 (P#Q=f,z) 
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(1.3) 

hold together with (1.2). 

Here k,,, and (- l)pk,* are, respectively, the normal and geodesic curvatures of the co- 

ordinate line x4= const on the middle surface, (-1)q m is the geodesic torsionofthe surface 
S in the direction of this same line, and E,G.~J,J~,N are coefficients of the first and 

second quadratic forms. 

Integrating (1.1) by using power series in the coordinate t, and using the relationships 
(1.2) and (1.3) here, as well as the symbolic writing of A.I. Lur'e /2,3/, we obtain 

Here Ai,,, . . &,, are known differential operators /l/, uj = ~~*(a,$, 0) and oj = ~,~~(a, 
fi,O) are the displacement and stress on the middle surface for t = 0. 

It can be shown that all the coefficients Afk,,uj are expressed in terms of the quantit- 

ies E, 0 G {El, Ep, 0) and x,7 _= {x~,x~,%} are respectively the components of the tangential and 

bending strains of the middle surface /4/ 

&,,,U1 - t, = 2 (C6Fp + QEq), A:,, $L) = w (p#q=k2) (1.6) 

11&J~, = mp + (26, .- 1) mo + k,,t, 

iI&, ,U) = 2a + Ho + m (1% -1 2Es) 

A;,, ,u, = L, (t, w) = k,*t, - (a,* +k,*) t, - (a** + 2k,*) co 

mp = 2 bx, i- w,) 
A& (Uj EG Lj(t, O) = - k,tl - k:,t, - 2m~, ml + 1r~2 = 4csm* 

A:~, 2~1 - rrih. (x, q -+ rr;” cc, (I)), 
rl,, = cakqsm* i- k,,m, + (46, - 2) rnx 

lI,, = Hr + m (c,m* + m2 - ml), II,, = - c&Ip*m*, II,, = - ceHm* 

The coordinate system a,P,t is used to study the internal, thin-shell state of stress 

varying smoothly in the domain V. Another part of the state of stress, localized in the 

boundary-layer zone and decaying exponentially with distance from the shell edge, is invest- 

igated in a system of local semi-geodesic coordinates n,s,t. To this end, orthogonal semi- 

geodesic parametrization P = r(n,s) is introduced on the middle surface, whose single egde 

is determined by a regular closed line r, so that the family of coordinate lines s = const 

will consist of geodesics perpendicular to r. The line r is here determined by the equa- 

tion n = 0, and the coordinate s is its natural parameter. 

Furthermore, to indicate in which coordinate system the components (sik, uk 1 etc. have 

been obtained, we rename them by replacing the superscipts 1 and 2 by appropriate letters. 

2. Internal state of stress and strain. Let rl and I‘% be partsoftheshellsur- 

face given by 5 = &I and n. = 0, respectively (5 = t/h, where h is half the shell thickness). 

Let us extract the homogeneous solutions out of (1.4) and (1.5), i.e., solutions which keep 

the boundary rl stress-free 

oQi = 0 as j = * 1 (i = 1, 2, 3) (2.1) 

and permit satisfaction of the boundary conditions on the endface surface rz 

s*** = q1*> ens* E 42 * csns* = q3* as n = 0 (2.2) 

where qi* = ~LIJ~(S, 5) are coordinates of the external force intensity vector. 

Taking account of (1.5), we write the system (2.1) thus: 

(pi t z h” (A:i, zsuj -1. B~i, ZsUj) = 0 (2.3) 
s=1 
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5 h2.(Aii,*S+lUj + &i,%3+I~j)=O (i= 1,2,3) (2.4) 
s=cl 

We shall seek the undamped solution of the singularly-perturbed system presented above, 

as h-+ 0. In this case the operators &,, and B$,, applied to the functions ujand cj do 

not change their order of smallness in h, while the stresses cj admit of asymptoticexpansion: 

cj = cj, 0 + h%j,1 + h40j,s + . . . (j = 1, 2, 3) (2.5) 

Substituting (2.5) into (2.3) and equating the expression for !P* (k = 0, 1, 2...) to zero, 

we obtain a system of recursion equations in the unknowns (JI,? (r = 0, 1, 2, . ..). We hence find 

uj = - h2Aij, %ui - h4Cf, 42au1 + . . . (i = 1, 2, 3) (2.6) 

Cj,mrl = A:j,, - Bij,.Afk,l (mt r, 1 = 0, I, 2, ,..l 9) 

Eliminating the stress Uj from (1.41, (1.5) and (2.4) by using (2.6), we obtain 

uk* = Us + h&l:,lui + h2pAA:,fui + . . . 

upq = Aiw. oui + K.Aba. IQ + ha (PA;,, a - &, oA&a) ut + . . - 

‘J3k = h2 (5’ - 1) (A.&,~ut $ hSA:k,Gi + . . .) (py Q = 1, 2) 

AZ, 1uk + h2Ct, 312uk + h* ((=j”, 63% - &j, IC!, 4~) Uk + . . . = 0 
k 

Cj,sl$k E hj (% T) + Aj* (ET 0) 

113 = - -$[cu (faHa - k&t) + caVl m* 

Ap = + ([(c~tH - cak,,) a** - c4m8,*] m* - c~c.&,* (Hm*) + 

as* [(k,, - k,,) z + m (% - %)I~ 

V= @'I* + h*)%* + (&* + kz*)&*, m*=x, +x2 

(p#4=1,2; i=1,2,3) 

Furthermore, by appending the strain continuity equation to (2.8) /4/ 

(2.7) 

(2.8) 

Qj (X9 T) G Lj (m, 2t) - 2IIzj (X, t) = Rj (E, 0) (i = 1, 2, 3) (2.9) 

and selecting the quantities of the strain components E, o and x,r as unknowns, we willseek 

the undamped solution of the system obtained in the form of asymptotic expansions 

Ej = 2 h”‘,j, r, xj = h-2 z hWxj, r (E~=O,X)sZ,j=l,2,3) (2.10) 
r=0 r=o 

Now, substituting (2.10) into (2.8), (2.9) and equating the expression for hrl* to zero, 
we obtain a system of recurrent equations in the functions ej,r and xj, r 

Lj, t (tt 0) = -Aj, 7 (XT T)Y Qj, r (Xv T) = 0 (i = 1, 29 3) (2.11) 

&j,l (X, t) = Rj, I (E, 0) etc. (1 = r + 4, r = 0, 1, 2, 3) 

For instance, writing L,,,(t, o) or tp,r is decoded thus 

&,,(t, oj = k,*t,,, - VP* + k,*)t,,, --((as* + 2k,*)o, 
1 p, 7 = 2 (C&p, 7 + wq, A 

Determining the functions Ej,r and XI,, from (2.11), and then substituting (2.10) into 
(2.7), we find the asymptotic expansion of the components of the shell internal stateofstress 

and strain. Taking account of (1.6), we obtain 

u pP = h-'@,,~ + h-";5mp,,+(5m,,z+tp,0 + 52&p,~-cJ&3,~)+... (2.12) 

U 12 = h-l2 5~0 + h-w 5~1 + (2 5~2 + 00 + C21&t, ,,) + . . . 

Ugk = (5” - 1) (&,,, + hWI&+...), uk = h-‘Uk,b + h-'kk,l+... 

up* = h-Gp, ,, + h-=$,, 1 + h-’ [up, 2 - 5 (ap*us, o t kppup, o + 
&mu,,dl + . . . 

uQ* = h-%3,0 + h-“/us, 1 + h-lu8, 2 + . . (P#Q=l72) 

Let us note that the problem of determining the middle surface displacements by means of 

given strain components is solved in quadratures /4,5/, here the quantities uk. r are found 
in terms of the functions Xi,? and El,?4. 
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Let us introduce the specific forces T,, S,,, N, and the moments GprH’lP originating on 
the shell coordinate sections xp= const (p#q=l,Z) 

%)l/zdt= TpipO i- SqPiqO - N,i, = oh 2 hr'z(T,,.i,~ + Sqp,&o - I%',,,&) (2.13) 
r=0 

A, 5 (qp) Y b)tJ/zdt=(- I)* (N &,o + G&o) = <-- I)* I.L~ 2 hr'2(8qp,rip0 1. G,, &) 
--h r=0 

Here I_Q,) is the stress vector on the surface z" = const, and ifl = (i,)It=o. Substituting 
(2.12) into (2.13), we obtain 

T p, T = Zt,, r + f car* (cd - k,,) (2.14) 

N P, r= - -$ fsap*m,* = (fdcd ap* VA, r + G, ,) 
S $1, + - 312, I = (k, - kp) Hu, r + m (G,, r - G,, J 
(p#q=l,2: r=0,1,2,3) 

(2.15) 

Eliminating the quantities tp,r, wI and mp,,, ~~ from (2.11) by using (2.14) we obtain 

(%* + kp*)Tmr - kp*T,,, t- (a,* + k,*)~yp~,r f k4*L)'4P,r + (2.16) 

k N PP P, T -; mN,,,=O 

fillT1, T -C k&",,, + m (S'lz,, C S2,, ,) - (I%* + kl*)N1, 1- - 

(&* + ks*) N,, T = 0 

k,*G,, , - (ap* -- k,*) G,, r $- (as* - 2/r,*) Hz,, T -L N,, ~ = 0 

(p#q=1.2; r=O, 1,2,3) 

2mH21,. - LG,,, - LG,,, -1 (f&s) H(G,, t G2,r) = 0 

The first six equations from (2.15) and (2.16) agree in form with the equilibrium equa- 

tions of general shell theory /4/. Hence, (2.14) should be considered as an equationofstate. 

It can be shown that the internal state of stress described by the relationships (2.12)-- 

(2.16) is the sum of membrane and purely couple-stress states. 

3. Simple edge effect. By using the system of local coordinates n,s,t we seek the 

solution of (2.1) localized in the boundary layer, for which the following asymptotic relat- 

ionships are characteristic 

i3pzij = 0 (Uj/hvp)~ apoj = 0 ((JJh”~‘) (p = 1, 2; Y1 = '/2, Yz = 0) 

(a, E alan, a, = a/as) 
(3.1) 

Estimating the orders of the differential operators applied to the displacements ui in 

the expansions (2.6), it can be established that the expansions (2.6)- (2.8) hold also for 

the solution possessing the property (3.1). As is known /6/, the system (2.1) reduces to one 

constitutive equation by using the stress function in the case of circular cylindrical and 

spherical shells. For shells of arbitrary shape an asymptotic analog of the stress function, 

the function (~3, is successfully obtained. We set 

up = M,p'pa + 'PP? *3 = M,,cp, (P # P = 1, 2) (3.2) 

Msp= MS*, t Xp,~&2+Xp,h,&&+... t-X,,6 

dzmdIk = dlkdzm s A,V,V,” 

M33 = M,,* +- YldlS +- Yzd12d2 -1. . . -+ Y~c,, 

Ms3* = x (d14 $- 2d12 d2= L dzl) 

M&= (xH - lc,,/2) dp3- wn d, d,% (czsk,,- xk,,) dq2 d, + cgm dq3 

Here Xp,? and Y,(r. = 1, 2,...,6; m = 1,2, . . . . 10) are functions to be determined, Maj* are 
cofactors to the elements +j of the determinant detllaijII(a,j = A$,,) in which the symbols 8, 

and 8, are considered as numbers. 
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(3.3) 

(summation over repeated superscript p from 1 to 2). 
Because of the selection ofM sk*the operators Aij,IM,b have the form 

A$ ,M3h.= i #a ‘a ’ I 9 (f-t_r-,(.4, j=L2.3) 
i. r=* 

Now, having the functions X,,, satisfying the conditions 

(P) fP) (P) _ (P) _ (P)__ (P) _ () 
a‘$() = aa1 = a22 - U$cJ -a,, - US” - :p= 1,2) 

at our disposal, we use the arbitrariness of the functions Y,, so that all the remaining co- 
efficients a,,@)(1 -/- rj4) would vanish for circular cylindrical and spherical shells. 

We hence find the quantities X,,,,Y, and a# some of which are presented below 

Xl,, = k,” (cw%~ - xk,) - (csks i- x&‘, Y, = 2xk,*, (3.4) 

Yt=2X(As), 

X2, 1 = AZ @SW + f&J, - 5x%,‘, A&, IM3h. = 25 {k,‘d,’ - 
4k,m dls dz + (2k,k, Jr 4m2) d12 a22 - 4k,m do dz3 -I- k,’ dt’ i- 
2 [k,*k,$ - Az (mk,),q’l dla + 2 [(A&k, + 2A2m%’ + (mk,),’ -I- 
?k, (m,’ - A&,‘)1 dla dz -t . .F 

Furthermore, following /7/ and taking account of (3.41, we expand the coefficients in 
(3.3) in a power series in the coordinate n and we stretch the scale 

n = hi@, a, = w~a,,, a,,=ataz, A, = 1 - I/‘&k, + . . . (3.5) 

k,,= k, In-i,< mn = m In+ k, = k,* In=,, , etc. 

Finally, by seeking the unknowns 91 in the form of the expansions 

(3.6) 

and substituting (3.6) into (3.2), (3.3) and (2.7), we obtain 

For small h we find 

(3.71 

(3.8) 

13.9) 
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.JA = (%)-’ [(%/a& + f (WWol. 
Ez = (2k,,)-’ [4 (ak,/dn)o $ k&d 

where ilf, = Mk(s), & = Q(s)are functions determined from the boundary conditions on r9 

4. Boundary-layer type of state of stress and strain. we shall seek the de- 

caying solution of the system (2.1) that is characterized by the asymptotic relations (3.1) 

for v1 = 'l.v, = 0. To this end, we expand the coefficients of (1.1) in a power series in II 

and 5 and stretch the scale. We finally obtain 

(v1*)c’ - NJ13 +- a,,us* .: hF, + . . = 0, (4. 

(uz*)b'- (523 -+- hF, -- . =o 
1) 

(b*)F’ t f4%3 + cn&l~l* + w, + = 0, 
(CT& + &sol3 + hF, + . = 0 

(~13)~’ + ~4811033 $ 4~811~11l* i- hF4 -$- . ..= 0, 

(us&’ + a1131~* + hFs + . . = 0 

u,2 = allus* + hF, + .) u11= cpugg t 4xallul* + hF, + . . . 

a22 = c4~33 + 2c4anvl* A hF, + . . ., Uj*=uj*/h (j=1,2,3) 
n = hp. a, = h-lall. a,, 3 alap, F1 = kno (ul* + 5al,uB*) and SO on. 

(4.2) 

Seeking the unknowns VT and e3j in the form of the series 

and integrating (4.1) under the initial conditions 

we successively find vzk and (J3j.k (k = 0, I, 2. . ..) 

u,*/h = ‘/, (x z cos z - fi sin z) o,/i3,, - l/,x z sin zu,/a,, + 

(COS z - xz sin z)ul + (f,sinz - xzcosz) va + hut1 + . . . 
u,*/h = sin ZU,/C?,~ + cos zuZ + hvz I + . 
u,*/h = - ‘/,xz sin Za,/a,, - I/, (xz cos z + fi sin z) o,&, - 

(f, sin z + xz cos z)vl+ (cos z + xzsin z) vQ + hu,l 1 +.. . 

(5 n3 = (Cos Z - xz sin z) u, - (f4 sin z + xz COS Z) U3 - 
2x (sin z + 2, cos z)a,,u, $- 2xz sin za1p3 + hunn3, 1 +... 

0 s3 = COSZU~ - a,, sm zuz -t ho,,, 1 + . . 

uSa = (f, sin z - x.2 cos z) u1 + (cos z + xz sinz) u3 + 
2x2 sin Zallul + 2x (z cos z - sin z)a,,u, + ho,,,, + . . . 

(4.3) 

(4.4) 

(4.5) 

Taking account of (4.3) and (4.4), we find from (4.2) 

U nn = (f8 sin z + xz cos z) uI + (c, cos z - xz sin z) u3 + 
2x (2 cos z - z sinz)a,,u, -2x(sinz + z cos 2) alp, + Izu,,,~ _t . . . 

U 83 = c4 (sin zul + cos zu3 + za,,cosz u1 -28,, sin zu& + hugs, 1 -t 

%LS = sin z u2 + a,, cos zu2 + ho,,, 1 + . . . (z = La,,) 

Moreover, let the unknowns vj and Uj be determined by the asymptotic expansions 

uj = 3 hkb. ,r k, u,= z WUl, k, us = h-’ 2 1#u2 ,. 
*=#I P=” k-0 " 

(4.6) 

(r=1,3; j=l,Z,3) 

We note that since the stress cnj of the simple edge effect is describedbyapowerseries 

in h'lz and are used in satisfying the boundary conditions on rz, then the asymptotic expan- 

sions (2.10) and (4.6) should also have the same configuration. 

Now, taking account of (4.4) and (4.6), we obtain the principal boundary-layer equations 

from (2.1) 



353 

(4.7) 

Determining the unknowns (T~,L and L'j,I from (4.71, and then substituting (4.6) into (4.3)- 

(4.5), we obtain asymptotic expansions of the boundary-layer type components of the state of 

stress and strain 
(4.8) 

uc’l= Cf, iz;’ (xY~’ - cos ~$5) + DC, [oh_’ (xYf’ + sin 0,s) + 

xi' [(I - 2~) mocos xkc - 8% sin xkc] A$ I (1 = 0, 1) 

Yp’= zkc sin z& + sin2zh. cos z&, z,YpI!'= aYC'/a[, 

c:, 1 = Ck, [ exp (z,p)/cos zk 

Yp)=fZg ~0~0~5 - ~0~~8, sine,<, eh.yp = - ayf)jag, 

o:, I = Dk,I eXp(ekp)/SiIl8, 

Here the numbers xk,yk,z,,6$ are nonzero roots of the appropriate equations 

cos x = 0, sin y = 0, sin 22 = - ?z, sin 28 = 28 (xk > 0, . . . . Re ek > 0) 

and the functions Ak,l = Ak,I (S), . . ., Dk,l = Dk,[(s) are to be determined from the boundary condi- 

tions on Tz. 

In a first approximation the relations (4.8) agree with the homogeneous solutions obtain- 

ed in slab theory /8,9/, and for n = 0 the following hold 

Here, for instance, only that part of the expression u 

s%.l (C, D). 

$,%,L which is proportional to the func- 

tions ck,( and &,I is denoted by 

It follows from (4.9) that the system of stresses originating on the boundary I'% is self- 

equilibrated over the shell thickness in a first approximation, and therefore, the state of 

stre-- of boundary-layer type is a Saint-Venant edge effect. 
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5. Satisfaction of the boundary conditions. We examine the problem of complete 
reduction of the system of external stresses from the endface surface rz. We seek the general 

solution of this problem in the form of a sum of the internal state of stress and strain (l), 

the simple shell edge effect (2) and the Saint-Venant type boundary layers (3) 

The stresses and displacements in (5.1) are given by (2.12), (3.8) and (4.8). By virtue 

of (5.1) the boundary conditions (2.2) become 

0,p In=O=h-‘uOnp,O 4- h-‘k&, + n:,,2 $ ...=qp,“+h’~~qp,l +... (5.2) 

(5,3 In+ = h-%P ?%I + &,a + . . . = Qn, I, + k’i’CJJ, 1 -I- . . . 

(a = ~oh”zgk, 7) 

Hence, equating the expressions for 11-l and h-'/p to zero , we find 

Qo=O, Mo = G,, o I,,+, .-I,, o = - 3.x$ sin xkHsnr o InzO (5.3) 

MI = {G,, I+ I%, (fG,,,Jy) + [CjE, - 24E, - (2 + Y) kg1 G,,,&y} In=*) 
Ah.,1 = 3~~-~sin CQ.--H,,,,~ -:-(v - I)& (G,,, o/y)] In=0 (k = 1, 2, . . . m) 

Moreover, taking account of (4.9) and integrating (5.2) with respect to <, we obtain a 

system of boundary conditions for solutions of the type (1) and (2) 

(5.4) 

(j= 1,2,3; r= 0, 1, a,...) 

Hence, for r = 0 it follows 

(TA, o-NA, okR/k,o - (mS’kg/k,o - mo2+2k,f& +a,‘) (G,, o/k,o)> In=o= 

To* - Na*kgfkSo (Th,,= T,,, - mHsn,o, N~,o= N,,,o-- &Hsn,o) 

(&0 + moG,, o + & [N:L, ,Ik,, + (m3’IkSo + 2f&) (G,, o/k,o)l - 

k,& (G,, ,/k,o)} jnzO = So* + &(h’a*/kso) (S’:n,,= .\‘sn,o - k,H,,,o) 

Q1 = [(if& - 35Et - Sk,) G,, o t 78% (fG,, o) + A’;, 01 In=0 - No* 

To*= jLql.odL .Yo*= i qz, o d5, No* = - i 43, o dc 
-1 --I 

(5.5) 

Here Tt,,,, Sk, o, IV’,, o are reducededge forces /4/. ~ordeterminationof functions Hk,", Clr,", Dk,o in 
(4.8), we use the Lagrange principle of possible displacements. Since homogeneous solutions 

satisfy the equilibrium equations and boundary conditions on rl, then the variational equa- 

tion takes the form 

Varying the functions Rh.,"(li ::: 1,2,. m), we obtain from (5.6) 

As is seen from (4.8), the stresses urrn,i and u$i(l = 0,l) are proportional to the coef- 

ficient x (0.5 < x < 1). By varying the function CP,.O and L&.0 and obtaining a system of linear 

algebraic equations from (5.6) for x = 0.5, this permits construction of an appropriate system 

for an arbitrary value of x. We have 

C~,0(1-+sin2Zk)Z~i+ 8% Cm, ozkz,, (sin* Zk - sin2 2,) (Zk - %Jm3 (Zk + Z,)Y = 
m=, 
rnik 

(2xz, cos ZJ’ 
Cs’ 

[q1, 0 (L/2Yp - COS z&g + 
-I 

(5.8) 
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q3, o (l/zYp’ - sin z&)1 dc $- 3 (k,o (YG,, o - G,, O) CP/CS~ -I- 8moH,,,, o] zi’ sin 2~) In-o 

m 

D~,~(I-~cos~~~)~;‘+ 8;cI D m, ,e,e, (COG er - cos2 em) (e, - em)- (ek + %J-2 = 
m=l 

m#k 

12&H,,, & ~0s 01, 2 x;’ (x,” _ ~3~2)-2] In_ (k = lt2, . . . m, 
r=1 

The systems (5.8) encountered in slab theory are always solvable, and the method of truncation 

/8,9/ is used for their solution. 
Let us indicate the sequence of seeking solutions of the type (l), (2) and (3). Whenthe 

forces T,*, So*, No* on I’2 are not simultaneously zero, we find firstly the quantities T,,o,S4P,0, 

N,, o, Gp, o, Ha o characterizing the internal state of stress by integrating the differential 

equations (2.16) in combination with the boundary conditions (5.5). Then by using the bound- 

ary conditions (5.3) and (5.5) as well as the infinite systems (5.7) and (5.8), we determine 

the functions MO, Q1 and the functions AB,O, Bk,O, C,,,, Dk,o (k= 1,2,...m) comprising the arbitrar- 

iness of the solutions of the simple edge effect equations and the boundary-layer equations, 

respectively. If To* = So* = No* = 0 on the shell edge, then as follows from (2.16), (5.3) 

and (5.5), the quantities TP,O, S,,, Or -VP,,, G,, o, HzIs oy MO, Q1 must be set equal to zero and the 

computation must be started with the boundary-layer, i.e., with the solution of the systems 

(5.7), (5.8). 

It is expedient to consider the relations (2.12)- (2.16) and (3.7)- (3.9) resulting from 

the solution of a three-dimensional problem of elasticity theory together with the boundary 

conditions (5.3)- (5.5) as a system of "two-dimensional" equations of the refinedappliedtheory 

intended to reduce the stress from the endface surface r2. By assuming a boundary-layertype 

solution (4.8) here, the boundary conditions on r2 can be satisfied more exactly than in the 
integral sense. We note that the results of this paper are valid even for shells of zero and 

negative curvature if only the contour r bounding the middle surface of these shells has a 

non-asymptotic direction throughout. 
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